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Abstract
In this paper we present the explicit calculation of the velocity probability
distribution function P(v) for a model system of granular gas within the
framework of Tsallis non-extensive statistical mechanics, using the stochastic
approach by Beck (2001 Phys. Rev. Lett. 87 180601), further generalized by
Sattin and Salasnich (2002 Phys. Rev. E 65 035106(R)). The calculation is
self-consistent in that the form of P(v) is not given as an ansatz but is shown
to necessarily arise from the known microscopic dynamics of the system.

PACS numbers: 05.40.−a, 45.70.−n

1. Introduction

Much research has recently been devoted to the study of spatially uniform systems with
dissipative interactions (‘granular matter’); see, for example, [1–6] and references therein.
Among the issues addressed, much attention is given to transport properties and therefore
to the details of the asymptotic velocity statistics. Although details vary according to the
particular model chosen for describing the granular matter, an interesting feature common to
almost all of these models is the overpopulation of the high-velocity tail of the probability
distribution function (PDF) with respect to the standard Maxwellian (Gaussian) distribution,
either in the form of a stretched exponential, or a power-law distribution [5].

The existence of non-Gaussian high-energy tails calls obviously for points of contact with
the formalism of the non-extensive statistical mechanics (NESM), originally introduced by
Tsallis [7], which has exactly this distinctive feature. Furthermore, there is the interesting
property of some models for granular materials, so-called inelastic Maxwell models (IMM),
allowing analytical calculations to be performed. The fact that velocity PDFs can be
computed exactly from the constitutive equations of the model raises the interesting question:
how is Tsallis statistics actually generated by the microscopic dynamics of a system?
This point, in connection with granular gases, was first raised but left unanswered in [1].
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In this paper, we address this question and show that PDFs for the class of granular gases
studied can be computed self-consistently by essentially combining the microscopic dynamics
with the hypothesis of the molecular chaos and with a stochastic formulation of NESM. To
the best of our knowledge, only one other group [8] has been able up to now to explicitly
derive Tsallis statistics from dynamical equations of an Hamiltonian system (but see also
appendix A). However, there, the system was built ad hoc. In our case, instead, we are
studying a model originally devised for a completely different purpose and which aims to be
an approximate but realistic approximation of physical systems found in reality.

The structure of this paper is as follows. In section 2, we give a brief description of
the IMM. Section 3 is devoted to the description of the stochastic interpretation of NESM.
Calculations are performed in section 4. Finally, section 5 is devoted to conclusions.

2. The inelastic Maxwell model

The model we use, or some variant of it, has been extensively used for the study of one- or
two-component granular materials [1–6]. Granular materials are assemblies of macroscopic
particles interacting through inelastic collisions. They possess some uncommon features.
Notably, they fail to obey the zeroth law of thermodynamics; in a mixture of two or more
interacting components isolated from the outside, each component can reach a temperature
(measured as the average kinetic energy of its elements) different from the other components,
although in the presence of an exchange of energy among them [1, 2].

Let us consider an ensemble of N particles, N1 of species 1 and N2 of species 2. Let
p = N1/(N1 + N2) = N1/N . The masses of the two species are different, m1 and m2

respectively, and we define ζ = m1/m2. To fix ideas, we also let m1 � m2 (ζ � 1). The
particles collide between them at a rate independent of their velocity and only binary impulsive
collisions are considered. Collisions can be inelastic and the degree of loss of energy in a
collision between two particles of species α and β is quantified by the restitution coefficient
rαβ � 1, with the equal sign holding for elastic collisions.

In one-dimensional geometry, the velocities of two particles i and j change after each
collision according to

v
′(α)
i = v

(α)
i − (1 + rαβ)

mβ

mα + mβ

(
v

(α)
i − v

(β)

j

)
(1)

v
′(β)

j = v
(β)

j + (1 + rαβ)
mα

mα + mβ

(
v

(α)
i − v

(β)

j

)
.

The superscript is to remind that the collision can be between like (α = β) or unlike
(α �= β) particles. It is possible to show that equations (1) conserve the momentum but
not the energy, unless all rαβ are equal to 1. All the particles are allowed to interact, regardless
of their position (mean-field approximation). In numerical calculations, a predefined fraction
of particles at each time step is randomly picked up and made to collide.

Let us now briefly describe the main features of this model. Master equations can be
derived for velocity PDFs Pα(v, t), which give the probability density for finding a particle
of species α at time t with a velocity of around v. They satisfy a coupled set of differential
equations; see [1, 4].

In the case of a pure component, i.e. only particles of species 1 or 2, it is possible to
show [1] that an asymptotic solution (i.e., valid for t → ∞) of the corresponding equation for
P(v, t) exists and has the shape

Ps(v, t) = 2

π

1

v0(t)

1[
1 +

(
v

v0(t)

)2]2 (2)
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where v0(t) is an exponentially decaying function, v0(t) = v0(0) exp(−λ(r)t), and λ is a
function of the restitution coefficient with λ = 0 if r = 1.

The result (2) is intriguing since it predicts a power-law tail for high v. Ps has the
form commonly found within the framework of NESM but it derives from ‘exact’ equations
of motion, and not from variational principles involving the entropy and the energy of the
system.

The two-component case is more complicated and equations can be solved analytically
only to a certain extent and under some approximations. The p → 0 limit was addressed by
Ben-Naim and Krapivsky [4]. This limit allows one population (the background fluid) to be
freely evolving while the other (the impurity) is driven by the former. For ζ � 1 (i.e., light
impurities embedded into a fluid of heavy particles), Ben-Naim and Krapivsky demonstrated
that the PDFs for the impurities as well as for the fluid can generically be written as linear
combinations of powers of Lorentzian functions:

Pfluid,imp(v) =
∑
n�2

B
(n)
fluid,imp

(
1

1 + v2

)n

. (3)

The coefficients B(n) depend upon the restitution coefficients, and some or even infinitely many
of them (but, of course, not all) may be zero. In the limit of high v, only the leading term
survives, hence P ∼ 1/v4 but for particular combinations of the parameters. Of course, the
result (3) encompasses equation (2) since p = 0 corresponds to the pure case.

It is worthwhile mentioning that Bettolo Marconi and Puglisi [1] also addressed the two-
component problem, still assuming ζ � 1, but allowing for finite values of p. They found
numerically that both species of particles have leading terms for high-v tails of the form

Pα,β(v, t) ≈ 1[
1 +

(
v

v0(t)

)2]ε(α,β)
(4)

with exponents ε which depend on all the parameters p, rαβ , ζ in a complicated fashion.
However, while ε(1) = 2, the light component was found to have a steeper descent:
ε(2) ∼ 3. We argue that the inconsistency with the results [4] is only apparent, and the
result (4) is a particular case of equation (3), corresponding to a peculiar choice of parameters
such that B(2) ∼ 0. The calculation will be put forth in appendix B.

Before ending this section, we elaborate on equations (1) that will be useful for the
following. By defining v

(α)
i − v

(β)

j = vrel, (1 + rαβ)
mβ

mα+mβ
= fαβ , we reorder the former of

equation (1):

�v
(α)
i = −fαβvrel. (5)

From now on we consider formally the right-hand side of equation (5) to be a known function.
By averaging over several collisions it is clear that equation (5) describes a Brownian motion
in the velocity space, of step |fαβvrel|. It is convenient to turn equation (5) into the form of a
differential equation

dv(α)

dt
= |fαβvrel|L(t) (6)

with L(t) white noise of zero mean and whose variance may be chosen to be unity after a
suitable choice of time scale. The minus sign appearing in equation (5) has been absorbed
into the definition of L.

At this point it is convenient to formally turn the system (6) into a driven one by adding a
term F = −γ v(α). This turns equation (6) into the Langevin equation

dv(α)

dt
= −γ v(α) + |fαβvrel|L(t) (7)
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from which the asymptotic temperature can be computed:

1

β
= f 2

αβv2
rel

γ
. (8)

We anticipate that β will turn into a fluctuating quantity, because of its dependency on the
stochastic variable vrel.

A non-zero value of γ corresponds to providing energy to (or draining from) the system
by the outside. Since in a dissipative system vrel approaches zero asymptotically, we can let
γ → 0 while simultaneously maintaining finite the ratio (8). In this way, β is defined but
for a multiplicative constant, which is of no relevance to our purposes. Notice, however, that
the pure elastic case (rαβ = 1) cannot, in this way, be included in our model, since it would
correspond to γ rigorously zero, thus equation (8) can no longer hold. The elastic limit is
a singular limit here because we are dealing with asymptotic behaviour; regardless of the
smallness of dissipation, it will always lead to finite effects over infinitely long times.

3. The stochastic interpretation of NESM

Tsallis NESM has received considerable interest over the years because of its capability to
describe a wealth of disparate phenomena (from anomalous diffusion, to turbulent systems,
etc) apparently unexplainable within the framework of the standard statistical mechanics. A
constantly updated list of references can be found in [9]; some recent reviews on the subject
are also given [10].

A subject relatively less explored concerns the relationship between NESM and the
microscopic dynamical properties of a given system; we would like to be able to compute the
PDF for one system given its evolution equations, or, at least, uniquely relate the features of
the PDF (say, the non-extensive exponent q) to some microscopical property characterizing
the system. We mention here the paper by Wilk and Wlodarczyk [11], which first related the
non-extensive exponent q to a definite microscopic property; in their case, the fluctuations of
the cross section for stopping high-energy cosmic rays. Beck [12] provided later a theoretical
framework to their finding, and Almeida [13] reached a similar conclusion by a different path.
More recently, Sattin and Salasnich [14] generalized Beck’s approach. Finally, Beck and
Cohen [15] formalized the whole by introducing the concept of superstatistics.

We mention also that a deterministic connection between NESM and microdynamics was
provided in a recent work (Adib et al [8]), showing how power-law PDFs arise in mesoscopic
systems evolving under suitable homogeneous Hamiltonians; an explicit calculation of a
power-law PDF was performed using a Hamiltonian of the Fermi–Pasta–Ulam type.

It is useful to briefly summarize the results [12, 14, 15], which are used in this paper.
According to Beck, any system S endowed with Hamiltonian H in equilibrium with a
surrounding heat reservoir B follows the standard Boltzmann statistics, thus its canonical
distribution is given by the Maxwell–Gibbs exponent: ρ(H) ∝ exp(−βH). However, the
reservoir itself may be not a simple system in equilibrium, but instead consisting of several
subsystems interacting between them. The generalized temperature 1/β, which quantifies the
interaction between S and B, might therefore not be a constant but a function varying in time,
to all extents a stochastic variable characterized by its own PDF P(β). Therefore, any attempt
to determine ρ(H) would yield only its average over P(β):

ρ(H) =
∫

dβ CH (β) exp(−βH)P(β). (9)

CH (β) is the normalization constant for ρ(H), which depends in general both on β as well as
on the particular form for H. In his original paper [12], Beck argues that P(β) should belong
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to a particular class of functions (χ2-distributions). It is straightforward to show that, using the
standard free-particle Hamiltonian H = u2/2, we recover the power-law behaviour for ρ(u)

first predicted by Tsallis on the basis of the maximum entropy principle. If, instead, P(β)

is a Dirac delta, P(β) = δ(β − β0), i.e. when fluctuations of β around its average value are
small, the standard extensive statistics is recovered. The two limits are not exclusive since a
χ2-function with infinite degrees of freedom approaches a Dirac delta.

Beck’s is an ansatz about P(β). In [14, 15] it is shown that if, instead, this constraint
is relaxed and β is supposed to be a derived quantity, β = β(c1, c2, . . .), where ci are the
actual fluctuating parameters that govern the dynamics of the systems, it is possible to widen
the class of distributions P(β) may belong to. As a consequence, different, even non-power-
law functional forms for ρ(u), were obtained. It was shown in [14] that some experimental
distributions could be fitted using these generalized functional forms.

4. Calculation of velocity statistics

Our purpose in this paper is to recover, within the interpretation for NESM described in
section 3, the results of [4], namely that: (i) the PDF for a pure granular gas has a power-like
high-v tail; (ii) the PDF for a light impurity in a background fluid has the same shape as that
of the fluid. We point out from the outset that our treatment will fall short of: (i) delivering
the value for the exponent of the power law; (ii) giving an account of the particular cases
found in [1] where the impurity and the fluid have different exponents. We believe, and try to
demonstrate in appendix B, that this latter shortcoming is a minor one since these cases should
be rather exceptional, i.e., of null measure over the parameter space.

We will begin with the pure case. The starting point is equation (9), hence we must know
P(β) in order to estimate the velocity PDF P(v). At this stage, there are two possible ways.
One way is to accept original the Beck ansatz and postulate that P(β) is a χ2-distribution

P(β) = 1

�
(

n
2

) [
n

2β0

]n/2

βn/2−1 exp

(
− nβ

2β0

)
(10)

where n is the number of degrees of freedom and β0 is the average value of β.
If we replace expression (10) in (9), and for H take the free-particle Hamiltonian,

H = v2/2, we can write

P(v) = K

∫
β1/2 exp(−βv2/2)P (β) dβ (11)

where the term β1/2 stems from the normalization of ρ(H), and all other constant terms have
been collected into K. It is straightforward to see that the result of the integration is

P(v) = K
1[

1 +
(

v
v0

)2] n+1
2

(12)

and hence the result (3) is obtained for (n + 1)/2 = 2 → n = 3.
This path is not completely satisfactory since it leaves us with at least two unanswered

questions: (i) why does P(β) have the form (10) and (ii) why does n take exactly that value?
The other approach is patterned following [14, 15]. Rather than postulating a form for

P(β), we attempt to derive one from what we know of the system. This way, we will be able
to give an answer to question (i), although not to (ii).

In equation (8) a relationship was written between β and the relative impact velocity. Now
we recall the relation between vrel and the particle velocity and we point out that the latter is
actually a stochastic variable with its own PDF. Therefore, vrel and β must also be considered
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as stochastic variables. β, in particular, inherits its PDF from that of vrel; if P(vrel) and P(β)

are the PDFs for vrel and β, a simple relationship exists:

P(β) dβ = P(vrel(β))

∣∣∣∣dvrel

dβ

∣∣∣∣ dβ ∼ P(vrel(β))
1

β3/2
dβ. (13)

Since P(vrel) is related to P(v), P(β) is some, still unknown, function of P(v).
Equation (11) with P(β) given by equation (13) is actually an implicit equation for P(v).

To solve it, we guess an initial functional form for P(v), we use it for computing P(vrel),
P(β) and hence, using equation (11), we recover P(v) again; the correct PDF must be a fixed
point of this sequence of transformations.

As a starting guess, obviously we adopt the expression (4). The joint probability for two
particles i and j (assumed uncorrelated) to have the velocities vi, vj is therefore

P(vi)P (vj ) dvi dvj = K
1[

1 +
(

vi

v
(0)
i

)2
]σ

1[
1 +

(
vj

v
(0)
j

)2
]σ dvi dvj . (14)

Since the two particles are of the same species, they have the same PDF, and hence we have
chosen the same exponent σ for both. Also, the average velocity must be the same, thus
v

(0)

i = v
(0)

j ≡ 1 after suitable rescaling. By converting to the variables vrel = vi − vj , y = vj

we can obtain the marginal probability P(vrel):

P(vrel) dvrel = K

(∫
1

[1 + (vrel + y)2]σ
1

[1 + y2]σ
dy

)
dvrel. (15)

From here on, all irrelevant constant terms must be considered as automatically merged into the
constant K, without the need to explicitly redefine it each time. The integral within parentheses
can be analytically performed. However, let us recall that we are interested in the high-energy
tail of P(v); therefore only the asymptotic behaviour for β → 0 and thus for vrel → ∞ is of
interest, and it can easily be shown that

P(vrel) dvrel
vrel→∞−→ K

v2σ
rel

dvrel. (16)

From equations (8) and (13) we obtain

lim
β→0

P(β) = Kβσ−3/2 (17)

and, substituting into equation (11),

P(v) = K

∫
βσ−1 exp(−βv2/2) dβ ∼ 1

(v2)σ
. (18)

We thus return to the initial expression (14). This is not a rigorous demonstration, since we
have not shown that there is only one solution. However, the several constraints that must be
satisfied by any physically realizable solution (it must be continuous with at least some of its
derivatives, normalizable, monotonically decreasing for high v) severely restrict the class of
potential candidates. It seems, therefore, enough to show that some other apparently plausible
choices fail instead to satisfy the above equations. We thus repeat calculations for the most
obvious choice: the Gaussian PDF.

We can straightforwardly write the equivalent of equation (15)

P(vrel) dvrel = K

[∫
exp(−(vrel + y)2 − y2) dy

]
dvrel

= K exp
(−v2

rel

/
2
)

dvrel (19)

→ P(β) = K
1

β3/2
exp

(
−β0

β

)
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with β0 constant term. Hence,

P(v) =
∫

β−1 exp(−βv2/2 − β0/β) dβ ≈ K0
(√

2β0v2
)

∼ 1

v
e−√

2β0v (v → ∞)

(20)

with K0 modified Bessel function of order 0. Since we do not recover the initial PDF, this
choice must be ruled out. Another PDF frequently used in this field is the stretched exponential
P(v) ∝ exp(−c|v|α), with α < 2. The general case cannot be dealt with, since it is not possible
to analytically integrate equation (19). However, the case α = 1 is easy to compute, and we
recover the same result.

We do not deal with the two-component case with substantial differences. We limit
ourselves to vanishing fractions of impurities, p ∼ 0. This means that, in equation (1), an
impurity particle is likely to collide only with a fluid particle. The relative velocity becomes
therefore vrel = vimp − vfluid. We allow for the two populations to have similar PDFs but with
different exponents. Thus equation (14) becomes

P(vimp)P (vfluid) dvimp dvfluid = K
1[

1 +
(

vimp

v
(0)
imp

)2
]σimp

1[
1 +

(
vfluid

v
(0)
fluid

)2
]σfluid

dvimp dvfluid. (21)

Now the two average velocities v
(0)

imp,fluid may in principle be different. Results [1] suggest that
they actually are equal, but this is not of concern here. Calculation of the marginal probability
P(vrel) shows that its asymptotic behaviour is, like equation (16),

P(vrel) ∼ 1(
v2

rel

)σfluid
(22)

irrespective of the value σ imp. The rest of the calculation then continues just as in equations
(17) and (18), showing that the high-energy tail is completely determined by the background
fluid.

5. Conclusions

In this paper we have been able to provide a self-consistent derivation of NESM PDFs from
microscopic dynamics, thereby providing a confirmation that Tsallis NESM is more than a
useful but mere formalism. Rather, the appearance of non-standard statistics is a natural
consequence of basic principles.

We point out that, even though the straightforward application of the naive Beck approach
[12] would be sufficient to recover the sought result, much more physical insight is gained by
the approach of Sattin and Salasnich.

Our results are not yet fully satisfactory. The most serious shortcoming, in our opinion,
is that NESM formalism looks unable to provide self-consistently a quantitative estimate for
its characteristic parameters (the exponent σ in our case, q in the general case). We cannot
say if this is due to some deficiency of our own approach, which is not able to fully exploit
all the information available, or it is inherent to NESM framework, although recent work [16]
strongly suggests that q is defined by the environment.
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Appendix A

It is useful to comment on the connections between this work and the Fokker–Planck equation
approach to Tsallis statistics done by Borland.

In the paper [17], Borland shows that Tsallis-type macroscopic distributions P(x) can
be obtained as stationary solutions of Fokker–Planck equations (or of equivalent Langevin
equations)

d

dt
P (x, t) = d

dx
(K(x), P (x, t)) +

1

2

d2

dx2
(D(x)P (x, t)) (A1)

provided that the convection and diffusion coefficients, K and D, are suitable functions of the
independent variable x. Borland gives general conditions that must be fulfilled by the couple
of functions (K(x),D(x)), as well as showing several particular cases. This approach and
that of Beck (equation (10)), and therefore the approach of Sattin and Salasnich, clearly have
many similarities. However, they are not equivalent; in particular, Borland deals with one
equation, whose coefficients are functions of the independent variable. Beck’s approach is
instead that of considering an ensemble of equations, each of them with constant coefficients.

Appendix B

To start with, we summarize the set of parameters used in the simulations [1]. These are:
(i) ζ � 1 (very light impurities); (ii) p = 1/2 (equal fractions of impurities and fluid); (iii)
rαβ ≡ r ∼ 1 ∀α, β (quasi-elastic restitution coefficients, independent of the species involved
in the collision; the precise value reported in [1] was 0.95).

Conditions (i) and (iii) allow us to define the coefficients (equations (3) and (4) of [4])

P = 1 − r

2
∼ 0 Q =

1
ξ

− r

1 + 1
ξ

∼ −r ∼ −1. (B1)

We give now without proof some results from [4]: (i) the coefficients B(n) appearing in
equation (3) can be written as linear combinations of other coefficients An. Here we are
interested only in B(2); its form is shown to be

B(2) = 1 − 3A2 + 3A3. (B2)

The coefficients An satisfy a recursion relation

An = Qn−1(1 − Q) − P(1 − P)

1 − Qn − nP(1 − P)
An−1 (B3)

where P and Q are defined in equation (B1), and which is supplemented by the initial condition
A0 = 1. It is straightforward to work out for our case

A2 ∼ −2

1 − Q2
→ |A2| � 1 and A3 ∼ A2 (B4)

which, when replaced in equation (B2), give B(2) ∼ 0.
The set of parameters chosen in [1] is therefore such to almost cancel the coefficient of the

leading term ∼1/(1 + v2)2. Although this term will eventually dominate for large enough v,
numerical simulations are unable to sample effectively that region, and instead are dominated
for finite v by the next-to-leading term 1/(1 + v2)3, whose coefficient is much larger.
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